China Custom Big Pulley Wedge Gear Wedge Large Drive Pulley belt pulley

Product Description

Stone/Rock/Mining Crusher Spare Parts Jaw/Cone/Impact/VSI Crusher Parts
We provide crusher spare parts for many band of crushing plants. 

We provide replacement parts for many brands of crushing plants. like, manganese liners,cone crusher mantle and concave(bowl liner), hsi bars and liners, blow bars, side liners, jaw liners, jaw plates, teeth plates, VSI wear parts, etc, for jaw crusher, cone crusher, impact crusher, VSI sand maker, etc.

We can provide custom casting service, based on the drawings from the clients.
We will make wooden mould, and sand cast the parts, after a series processes, you will get high quality wear parts in high manganese matching your machines. 
1-Introduction of Jaw Crusher Parts
Jaw plate is manufactured with super high manganese steel, therefore it has a service life 50~100% longer than those made of traditional high manganese steel. Every model of PE series jaw crushers is tested for shock, stress, strain, thermal loading, deformation, vibration and noise under a wide range of load conditions. The special processing techniques ensure that our jaw plate has leading performance:
1)Using cold processing hardening technology, the hardness is improved.
2)Water toughening technology to avoid making the performance poor during the process of natural phase change.

2- Introduction of Cone Crusher Parts
which is designed to protect the Cone Crusher, thus improves the working life.We supply high qualified concave in high Cr, Mo, alloy steel for Cone Crusher.
Cone Crusher Parts 
1. Spare parts for Cone Crusher.
2. Be used in manganese steel
3. We can do as per customer’s requirements.
We manufacture an extensive range of wear and spare parts in China for the worlds most popular crushing brands, like the spare parts for the below crushers.

Crusher type Model Spare parts
Cone   crusher HP100, HP200, HP300, HP400, HP500, HP4, HP5, GP100, GP200, GP300, GP550, GP11 Bowl liner, mantle
H2800, H3800, H4800, H6800, H7800, H8800, S2800, S3800, S4800, S6800
4FT.Standard, 4-1/4FT.Short head , 5-1/2FT.Standard

Features of cone crusher wear parts :
1) Material: high manganese steel:Mn13Cr2, Mn18Cr2, etc;
2) Use: Machinery in metal recovery smash, mine, metallurgy, chemical industry, cement, petroleum etc.
3) Production quality testing: High frequency infrared carbon & sulfur analyzer, Metallographic microscope, Machinery performance testing equipment, Hardness testing equipment, Ultrasonic inspection equipment
4) Easy installation: The anti-abrasion block is a semi-permanent part, which is easy for replacement.
Chemical composition of cone crusher wear parts

Code Elem C Mn Si Cr Mo P S
ZGMn13-1 1-1.45 11-14 0.3-1 ≤0.09 ≤0.04
ZGMn13-2 0.9-1.35 11-14 0.3-1 ≤0.09 ≤0.04
ZGMn13-3 0.9-1.35 11-14 0.3-0.8 ≤0.09 ≤0.04
ZGMn13-4 0.9-1.3 11-14 0.3-0.8 1.5-2 ≤0.09 ≤0.04
ZGMn13-5 0.75-1.3 11-14 0.3-1 0.9-1.2 ≤0.09 ≤0.04

3-Introduction of Impact Crusher Parts
Blow bar Made by high wear-resisting material:high chrome cast-iron and high-manganese steel.
We manufacture an extensive range of wear and spare parts in China for the worlds most popular crushing brands.
 
Chemical composition of Impact Crusher Parts

NO. chemical composition % HRC
C Si Mn Cr Mo Na Cu P S
KmTBCr4Mo 2.5-3.5 0.5-1.0 0.5-1.0 3.5-4.5 0.3-0.5 ≤0.15 ≤0.10 ≥55
KmTBCr9Ni5Si2 2.5-3.6 1.5-2.2 0.3-0.8 8.0-10.0 0-1.0 4.5-6.5 4.5-6.5 ≥58
KmTBCr15Mo 2.8-3.5 ≤1.0 0.5-1.0 13-18 0.5-3.0 0-1.0 0-1.0 ≤0.10 ≤0.06 ≥58
KmTBCr20Mo 2.0-3.3 ≤1.2 ≤2.0 18-23 ≤3.0 ≤2.5 ≤1.2 ≥60
KmTBCr26 2.3-3.3 ≤1.2 ≤1.0 23-30 ≤3.0 ≤2.5 ≤2.0 ≥60

Crusher Wear Parts

 

After-sales Service: One Year
Warranty: One Year
Certification: ISO 9001:2008
Standard: AISI, GB, ASTM, DIN
Surface Treatment: Without Processing
Manufacturing Process: Casting
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

gear pulley

What is the significance of proper alignment in gear pulley systems?

Proper alignment in gear pulley systems is of significant importance for ensuring optimal performance, efficiency, and longevity of the system. Here’s a detailed explanation of the significance of proper alignment in gear pulley systems:

1. Efficient Power Transmission:

Proper alignment ensures that the gears and pulleys engage correctly, resulting in efficient power transmission. Misalignment can cause excessive friction, energy loss, and premature wear of components. When the gears and pulleys are properly aligned, the force is evenly distributed across the teeth and surfaces, minimizing energy losses and maximizing the transfer of rotational power from the driving gear to the driven gear or pulley.

2. Smooth Operation:

Alignment plays a crucial role in achieving smooth and vibration-free operation of gear pulley systems. Misalignment can lead to uneven forces and vibrations, causing noise, increased wear, and reduced system stability. Proper alignment ensures that the gears and pulleys rotate without excessive axial or radial movement, resulting in smooth and reliable operation.

3. Extended Component Life:

Proper alignment helps prolong the life of gears, pulleys, bearings, and other components in the system. Misalignment can create excessive stresses on the teeth, shafts, and bearings, leading to premature wear, pitting, or failure. By ensuring proper alignment, the load is evenly distributed, reducing stress concentrations and promoting longer component life.

4. Accurate Speed and Torque Transmission:

In gear pulley systems, accurate speed and torque transmission are crucial for achieving the desired performance. Misalignment can cause deviations in rotational speed and torque, leading to inaccurate operation and reduced system performance. Proper alignment ensures that the gears and pulleys maintain the intended contact and engagement, resulting in accurate speed and torque transmission.

5. Reduced Energy Consumption:

Misalignment in gear pulley systems can result in increased energy consumption. The inefficiencies caused by misalignment, such as friction and energy losses, require the system to consume more power to achieve the desired output. Proper alignment minimizes these inefficiencies, reducing energy consumption and improving overall system efficiency.

6. Preventive Maintenance:

Proper alignment is essential for preventive maintenance practices. Regular inspection and adjustment of alignment help identify and correct any misalignment issues before they lead to significant damage or system failure. By proactively maintaining proper alignment, potential problems can be addressed early, reducing downtime and repair costs.

7. Safety:

Proper alignment contributes to the safety of gear pulley systems. Misalignment can create unexpected forces, vibrations, or sudden movements, posing safety risks to operators and surrounding equipment. Properly aligned systems operate predictably and reliably, minimizing the risk of accidents or damage.

In summary, proper alignment in gear pulley systems is crucial for efficient power transmission, smooth operation, extended component life, accurate speed and torque transmission, reduced energy consumption, preventive maintenance, and safety. Regular inspection and adjustment of alignment are necessary to ensure optimal performance and reliability of gear pulley systems.

gear pulley

How does the gear ratio in a gear pulley affect its performance?

The gear ratio in a gear pulley has a significant impact on its performance, influencing various aspects such as speed, torque, and power transmission. Here’s a detailed explanation of how the gear ratio affects the performance of a gear pulley:

Gear Ratio Basics:

The gear ratio represents the relationship between the number of teeth on the driving gear and the number of teeth on the driven gear. It determines how many times the driving gear must rotate to make the driven gear complete one revolution. The gear ratio is typically expressed as a numerical ratio or as a fraction.

Speed:

The gear ratio directly affects the speed of the driven gear relative to the driving gear. A gear pulley with a higher gear ratio, where the driving gear has more teeth than the driven gear, will result in a lower speed at the driven gear. Conversely, a gear pulley with a lower gear ratio, where the driven gear has more teeth, will result in a higher speed at the driven gear. Therefore, the gear ratio determines the speed reduction or amplification between the driving and driven gears.

Torque:

The gear ratio also influences the torque at the driven gear. Torque is a rotational force that determines the system’s ability to overcome resistance or to perform work. A gear pulley with a higher gear ratio, where the driving gear has more teeth, will result in a torque amplification at the driven gear. This means that the driven gear can exert greater force or torque on the load or system it is connected to. Conversely, a gear pulley with a lower gear ratio, where the driven gear has more teeth, will result in a torque reduction at the driven gear. In this case, the driven gear will exert less force or torque, but it will be able to rotate at a higher speed.

Power Transmission:

The gear ratio affects the power transmission capabilities of the gear pulley system. Power is the rate at which work is done or energy is transferred. The gear ratio determines how the power is distributed between the driving and driven gears. In a gear pulley system, the power is equal to the product of torque and rotational speed. A higher gear ratio will result in a higher torque at the driven gear, allowing it to transmit more power to the connected system. Conversely, a lower gear ratio will result in a higher speed at the driven gear, enabling it to transmit power at a faster rate.

Mechanical Advantage:

The gear ratio provides mechanical advantage in a gear pulley system. Mechanical advantage refers to the ability of a system to amplify force or torque. A gear pulley with a higher gear ratio provides a greater mechanical advantage, allowing it to handle heavier loads or perform tasks that require more force. On the other hand, a gear pulley with a lower gear ratio provides a lower mechanical advantage but allows for higher speeds and faster operation.

Efficiency:

The gear ratio can also impact the overall efficiency of the gear pulley system. In general, gear systems with higher gear ratios tend to have lower efficiency due to increased friction and power losses. The additional teeth in the gear train result in more contact points and increased surface area, leading to higher friction losses. Therefore, it is important to consider the trade-off between speed, torque, and efficiency when selecting the gear ratio for a specific application.

Overall, the gear ratio in a gear pulley significantly affects its performance, including speed, torque, power transmission, mechanical advantage, and efficiency. By selecting the appropriate gear ratio, engineers and designers can optimize the gear pulley system for specific applications, ensuring the desired balance between speed, torque, and efficiency based on the requirements of the machinery or system.

gear pulley

How do gear pulleys assist in the transmission of mechanical power?

Gear pulleys play a crucial role in the transmission of mechanical power in various systems. Here’s an explanation of how gear pulleys assist in the transmission of mechanical power:

Gear pulleys are part of power transmission systems that transfer rotational motion and torque from a power source to a driven component. They achieve this by utilizing the principles of gears and pulleys to control speed, torque, and direction. The primary function of gear pulleys is to transmit power efficiently and effectively between rotating shafts.

Here are the key ways in which gear pulleys assist in the transmission of mechanical power:

  1. Speed Control: Gear pulleys allow for speed control in power transmission systems. By using gears with different sizes or pulleys with varying diameters, the rotational speed of the driven component can be adjusted relative to the input speed. Larger gears or pulleys connected to the power source result in higher speed reduction, while smaller gears or pulleys result in higher speed amplification. This speed control capability enables gear pulleys to match the rotational speed requirements of different components within a system.
  2. Torque Conversion: Gear pulleys assist in torque conversion during power transmission. Torque is the rotational force generated by the power source. By using gears or pulleys with different numbers of teeth or diameters, gear pulleys can change the torque applied to the driven component. In a gear system, when a larger gear drives a smaller gear, the torque is increased, enabling the transmission of higher rotational force. Conversely, when a smaller gear drives a larger gear, the torque is reduced. This torque conversion capability allows gear pulleys to adapt the power output to the requirements of the driven component.
  3. Direction Control: Gear pulleys enable the control of rotational direction in power transmission systems. By using gears or pulleys in combination with other components such as idler gears or reversing pulleys, the direction of rotation can be changed. For example, meshing two gears in a gear system can transmit power in the same or opposite directions depending on their arrangement. Similarly, using pulleys with different groove orientations can alter the direction of belt-driven power transmission. This direction control capability allows gear pulleys to accommodate the specific needs of different components within a system.
  4. Power Distribution: Gear pulleys assist in the distribution of mechanical power to multiple driven components. By incorporating multiple gears or pulleys in a system, power can be split and transmitted to several output shafts. This is commonly seen in automotive transmissions, where gear pulley systems allow power to be distributed to different gears for different speed ratios. In industrial machinery, multiple pulleys can be used to drive various conveyor belts or auxiliary equipment simultaneously. This power distribution capability enables gear pulleys to efficiently transmit power to multiple components within a system.
  5. Mechanical Advantage: Gear pulleys provide mechanical advantage in power transmission systems. The mechanical advantage is the ratio of output force (torque) to input force (torque). By utilizing gears or pulleys with different sizes, gear pulleys can amplify or reduce the mechanical advantage. This allows for the adaptation of power transmission to match the specific requirements of the driven component. Gear pulleys enable the transmission of high torque at low speeds or low torque at high speeds, depending on the mechanical advantage needed.

Overall, gear pulleys assist in the transmission of mechanical power by controlling speed, torque, and direction, distributing power to multiple components, and providing mechanical advantage. Their ability to manipulate these parameters makes gear pulleys versatile and valuable components in various mechanical systems across industries.

China Custom Big Pulley Wedge Gear Wedge Large Drive Pulley   belt pulley	China Custom Big Pulley Wedge Gear Wedge Large Drive Pulley   belt pulley
editor by CX

2023-10-20