China Hot selling Big Pulley Wedge Gear Wedge Large Drive Pulley wholesaler

Product Description

Stone/Rock/Mining Crusher Spare Parts Jaw/Cone/Impact/VSI Crusher Parts
We provide crusher spare parts for many band of crushing plants. 

We provide replacement parts for many brands of crushing plants. like, manganese liners,cone crusher mantle and concave(bowl liner), hsi bars and liners, blow bars, side liners, jaw liners, jaw plates, teeth plates, VSI wear parts, etc, for jaw crusher, cone crusher, impact crusher, VSI sand maker, etc.

We can provide custom casting service, based on the drawings from the clients.
We will make wooden mould, and sand cast the parts, after a series processes, you will get high quality wear parts in high manganese matching your machines. 
1-Introduction of Jaw Crusher Parts
Jaw plate is manufactured with super high manganese steel, therefore it has a service life 50~100% longer than those made of traditional high manganese steel. Every model of PE series jaw crushers is tested for shock, stress, strain, thermal loading, deformation, vibration and noise under a wide range of load conditions. The special processing techniques ensure that our jaw plate has leading performance:
1)Using cold processing hardening technology, the hardness is improved.
2)Water toughening technology to avoid making the performance poor during the process of natural phase change.

2- Introduction of Cone Crusher Parts
which is designed to protect the Cone Crusher, thus improves the working life.We supply high qualified concave in high Cr, Mo, alloy steel for Cone Crusher.
Cone Crusher Parts 
1. Spare parts for Cone Crusher.
2. Be used in manganese steel
3. We can do as per customer’s requirements.
We manufacture an extensive range of wear and spare parts in China for the worlds most popular crushing brands, like the spare parts for the below crushers.

Crusher type Model Spare parts
Cone   crusher HP100, HP200, HP300, HP400, HP500, HP4, HP5, GP100, GP200, GP300, GP550, GP11 Bowl liner, mantle
H2800, H3800, H4800, H6800, H7800, H8800, S2800, S3800, S4800, S6800
4FT.Standard, 4-1/4FT.Short head , 5-1/2FT.Standard

Features of cone crusher wear parts :
1) Material: high manganese steel:Mn13Cr2, Mn18Cr2, etc;
2) Use: Machinery in metal recovery smash, mine, metallurgy, chemical industry, cement, petroleum etc.
3) Production quality testing: High frequency infrared carbon & sulfur analyzer, Metallographic microscope, Machinery performance testing equipment, Hardness testing equipment, Ultrasonic inspection equipment
4) Easy installation: The anti-abrasion block is a semi-permanent part, which is easy for replacement.
Chemical composition of cone crusher wear parts

Code Elem C Mn Si Cr Mo P S
ZGMn13-1 1-1.45 11-14 0.3-1 ≤0.09 ≤0.04
ZGMn13-2 0.9-1.35 11-14 0.3-1 ≤0.09 ≤0.04
ZGMn13-3 0.9-1.35 11-14 0.3-0.8 ≤0.09 ≤0.04
ZGMn13-4 0.9-1.3 11-14 0.3-0.8 1.5-2 ≤0.09 ≤0.04
ZGMn13-5 0.75-1.3 11-14 0.3-1 0.9-1.2 ≤0.09 ≤0.04

3-Introduction of Impact Crusher Parts
Blow bar Made by high wear-resisting material:high chrome cast-iron and high-manganese steel.
We manufacture an extensive range of wear and spare parts in China for the worlds most popular crushing brands.
Chemical composition of Impact Crusher Parts

NO. chemical composition % HRC
C Si Mn Cr Mo Na Cu P S
KmTBCr4Mo 2.5-3.5 0.5-1.0 0.5-1.0 3.5-4.5 0.3-0.5 ≤0.15 ≤0.10 ≥55
KmTBCr9Ni5Si2 2.5-3.6 1.5-2.2 0.3-0.8 8.0-10.0 0-1.0 4.5-6.5 4.5-6.5 ≥58
KmTBCr15Mo 2.8-3.5 ≤1.0 0.5-1.0 13-18 0.5-3.0 0-1.0 0-1.0 ≤0.10 ≤0.06 ≥58
KmTBCr20Mo 2.0-3.3 ≤1.2 ≤2.0 18-23 ≤3.0 ≤2.5 ≤1.2 ≥60
KmTBCr26 2.3-3.3 ≤1.2 ≤1.0 23-30 ≤3.0 ≤2.5 ≤2.0 ≥60

Crusher Wear Parts


After-sales Service: One Year
Warranty: One Year
Certification: ISO 9001:2008
Standard: AISI, GB, ASTM, DIN
Surface Treatment: Without Processing
Manufacturing Process: Casting
US$ 200/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

gear pulley

How are gear pulleys used in the production of electronics and manufacturing?

In the production of electronics and manufacturing processes, gear pulleys serve a variety of important functions. They are utilized in different applications to facilitate precise movements, power transmission, and speed control. Here’s a detailed explanation of how gear pulleys are used in the production of electronics and manufacturing:

1. Conveyor Systems:

In electronics and manufacturing facilities, conveyor systems are frequently employed for the transportation of components, products, or materials between different stages of the production process. Gear pulleys play a key role in driving the conveyor belts, enabling the smooth movement of items along the assembly line. These pulleys ensure consistent speed and precise positioning, allowing for efficient and automated production workflows.

2. Robotics and Automated Machinery:

Gear pulleys are integral components in robotics and automated machinery used in electronics and manufacturing. They are employed in robotic arms, gantry systems, and other automated equipment to provide precise and controlled movement. Gear pulleys drive the motors that control the motion of the robotic systems, allowing for accurate positioning, assembly, soldering, or testing of electronic components and devices.

3. Printing and Labeling Equipment:

In electronics and manufacturing, gear pulleys are used in printing and labeling equipment. They are utilized to drive the printing heads, label applicators, or other mechanisms involved in printing or applying labels to products or components. Gear pulleys ensure consistent and precise movement of these components, facilitating accurate printing and labeling in high-speed production environments.

4. Testing and Inspection Systems:

Gear pulleys are employed in testing and inspection systems used in electronics and manufacturing. These systems often require precise and controlled movements for the accurate positioning of components or test probes. Gear pulleys drive the motors that control the movement of testing fixtures, allowing for precise alignment and contact with the tested components. This ensures reliable and accurate testing and inspection results.

5. Machinery Speed Control:

In various manufacturing processes, gear pulleys are utilized for speed control. By using different pulley sizes and ratios, operators can adjust the rotational speed of machinery components. This flexibility allows for customization of the production process according to the specific requirements of different tasks or materials. Gear pulleys enable manufacturers to optimize the speed of cutting tools, processing equipment, or assembly lines, ensuring efficient and precise manufacturing operations.

6. Automated Assembly and Packaging:

In electronics manufacturing, gear pulleys are used in automated assembly and packaging systems. They contribute to the precise movement and positioning of electronic components, ensuring accurate placement and alignment during the assembly process. Gear pulleys drive the motors that control the robotic arms, pick-and-place mechanisms, or other automated systems involved in component placement and packaging operations.

7. Maintenance and Replacement:

Regular maintenance and inspection of gear pulleys are essential to ensure their reliability and performance in electronics and manufacturing processes. Operators should check for wear, damage, or misalignment of the gear teeth and pulley surfaces. Proper lubrication and tensioning of belts or chains connected to the gear pulleys are also important for their smooth operation. Timely replacement of worn or damaged gear pulleys is crucial to avoid interruptions in production and maintain the efficiency of manufacturing operations.

In conclusion, gear pulleys are widely used in the production of electronics and manufacturing processes. They contribute to the precise movements, power transmission, speed control, and automation required for efficient and accurate manufacturing operations. Proper maintenance and replacement of gear pulleys are necessary to ensure their reliability and optimal performance in electronics and manufacturing facilities.

gear pulley

How are gear pulleys utilized in industrial machinery and conveyor systems?

Gear pulleys play a vital role in industrial machinery and conveyor systems, facilitating the movement of materials and power transmission within these applications. Here’s a detailed explanation of how gear pulleys are utilized in industrial machinery and conveyor systems:

Power Transmission:

In industrial machinery, gear pulleys are used for power transmission between different components. They are often employed to transmit rotational motion and torque from an input source, such as an electric motor or an engine, to various output devices or components within the machine. Gear pulleys allow for efficient power transfer and enable the synchronization of different parts of the machinery, ensuring smooth operation and optimal performance.

Speed and Torque Conversion:

Industrial machinery often requires different speeds and torque levels for specific processes or tasks. Gear pulleys are utilized to convert the rotational speed and torque between the input and output shafts. By using gear pulleys with different sizes and ratios, the rotational speed and torque can be adjusted to suit the requirements of the machinery. This allows for precise control over the operation of the equipment and ensures that it operates within the desired speed and torque ranges.

Direction Control:

Conveyor systems in industrial settings often require the ability to control the direction of movement of materials. Gear pulleys are used in these systems to change the direction of rotation and, consequently, the direction of movement. By incorporating gears with different tooth arrangements or by utilizing multiple gear pulleys in specific configurations, conveyor systems can efficiently redirect the flow of materials according to the desired path or process requirements.

Belt and Chain Drives:

Gear pulleys are commonly used in conjunction with belts and chains in industrial machinery and conveyor systems. Belts and chains are wrapped around the pulleys to transfer power and enable the movement of materials. Gear pulleys provide the necessary grip and traction for the belts or chains, ensuring proper power transmission and reliable material handling. The design and arrangement of gear pulleys, belts, and chains can be customized based on the specific application requirements, such as load capacity, speed, and environmental conditions.

Tension Adjustment:

In conveyor systems, maintaining proper tension in the belts or chains is crucial for efficient operation and preventing slippage or excessive wear. Gear pulleys are used to adjust and control the tension in the belts or chains. By incorporating tensioning mechanisms, such as adjustable pulley positions or spring-loaded tensioners, the tension can be regulated to ensure optimal performance and longevity of the conveyor system.

Mechanical Advantage:

Gear pulleys can provide mechanical advantage in industrial machinery and conveyor systems. By utilizing different gear ratios, gear pulleys can amplify or reduce the input torque, enabling the machinery to handle heavier loads or perform tasks that require higher precision. The mechanical advantage provided by gear pulleys enhances the overall efficiency and productivity of industrial processes.

Overall, gear pulleys are essential components in industrial machinery and conveyor systems. They facilitate power transmission, speed and torque conversion, direction control, and tension adjustment. By incorporating gear pulleys into these systems, industries can achieve reliable and efficient operation, improve productivity, and ensure the smooth movement of materials in various manufacturing and industrial applications.

gear pulley

Can you explain the key components and design features of a gear pulley?

A gear pulley system consists of several key components and design features that enable its functionality. Here’s an explanation of the key components and design features of a gear pulley:

  1. Gears: Gears are one of the primary components of a gear pulley system. They are toothed wheels that transmit rotational motion and torque. Gears come in various types, including spur gears, bevel gears, helical gears, and worm gears. The selection of gear type depends on the specific application and requirements of the system. Gears have different sizes, number of teeth, and pitch diameters, which determine the mechanical advantage and speed ratio of the system.
  2. Pulleys: Pulleys are grooved wheels that use a belt or a rope to transmit motion and force. In a gear pulley system, pulleys are often used in conjunction with gears to provide additional control and flexibility. Pulleys come in different sizes and designs, such as V-belt pulleys and timing belt pulleys. They maintain tension in the belts and ensure efficient power transmission. The grooves on the pulleys guide and grip the belts, preventing slippage and maintaining proper alignment.
  3. Belts or Ropes: Belts or ropes are flexible elements that connect the pulleys in a gear pulley system. They transmit power and motion from one pulley to another. Belts are commonly made of materials such as rubber or synthetic polymers, while ropes can be made of materials like nylon or steel. The selection of belts or ropes depends on factors like the required strength, flexibility, and operating conditions of the system. Proper tensioning of the belts is crucial to ensure efficient power transmission and prevent slippage.
  4. Shafts: Shafts are the rotating elements that support the gears and pulleys in a gear pulley system. They provide the axis of rotation for the components and transmit torque from the input to the output. Shafts are usually made of rigid materials such as steel or aluminum. They need to be accurately aligned and supported to ensure smooth and reliable operation of the system. Bearings or bushings are often used to reduce friction and support the shafts.
  5. Mounting and Housing: The mounting and housing of a gear pulley system refers to the structure that holds and supports the components. The housing provides protection, stability, and alignment for the gears, pulleys, belts, and shafts. It is usually made of metal or plastic and designed to accommodate the specific configuration and size of the gear pulley system. Proper mounting and housing ensure the integrity and durability of the system, preventing excessive vibrations and misalignment.
  6. Adjustment and Control Mechanisms: Gear pulley systems may incorporate adjustment and control mechanisms to fine-tune the operation and performance. These mechanisms can include adjustable pulley positions, tensioning devices, and speed control mechanisms. By allowing adjustments, the system can adapt to different operating conditions, optimize performance, and accommodate changes in load or speed requirements.
  7. Safety Features: Depending on the application, gear pulley systems may incorporate safety features such as guards, limit switches, or overload protection mechanisms. These features are designed to ensure the safe operation of the system, prevent accidents, and protect the components from damage. Safety considerations are essential to maintain the integrity and reliability of the gear pulley system.

In summary, a gear pulley system consists of gears, pulleys, belts or ropes, shafts, mounting and housing, adjustment and control mechanisms, and safety features. These components and design features work together to transmit power, control speed and torque, ensure proper alignment and tension, and provide flexibility and adjustability in mechanical systems. By understanding these key components and design features, engineers and designers can create efficient and reliable gear pulley systems for various applications.

China Hot selling Big Pulley Wedge Gear Wedge Large Drive Pulley   wholesaler China Hot selling Big Pulley Wedge Gear Wedge Large Drive Pulley   wholesaler
editor by CX